
A multiplatform reasoning engine for the Semantic Web of Everything

Michele Ruta, Floriano Scioscia, Ivano Bilenchi, Filippo Gramegna, Giuseppe Loseto, Saverio Ieva,
Agnese Pinto

Polytechnic University of Bari, Department of Electrical and Information Engineering, via E. Orabona 4, I-70125,
Bari, Italy

{michele.ruta, floriano.scioscia, ivano.bilenchi, filippo.gramegna, giuseppe.loseto, saverio.ieva, agnese.pinto}@poliba.it

Abstract

The Internet of Everything and Semantic Web can be joined by giving more intelligence to pervasive
systems. To that end, reasoning capabilities should be enabled even for very resource-constrained
embedded devices. This paper presents Tiny-ME (the Tiny Matchmaking Engine), a matchmaking and
reasoning engine for the Web Ontology Language (OWL), designed and implemented with a compact
and portable C core. Main features are high resource efficiency and multiplatform support, spanning
containerized microservices, desktops, mobile devices, and embedded boards. The OWLlink interface
has been extended to enable non-standard reasoning services for matchmaking in Web, Cloud, and Edge
computing. A prototype evaluation is proposed, including a case study on the Pixhawk Unmanned
Aerial Vehicle (UAV) autopilot and performance highlights.

Keywords: Automated reasoning, Web Ontology Language, Internet of Everything, Semantic Web of
Things, Software architecture

“It is the wise who prevail in every field.” [1]

1. Introduction

Objects and environments –both natural and
man-made– are increasingly augmented with net-
working capabilities with the Internet of Things
(IoT), including hundreds of millions of people
using wearable devices to gather sensitive health
data continuously. The interconnection of peo-
ple, things, processes, and data is shaping the
so-called Internet of Everything (IoE), creating
new opportunities in a wide range of economic
and societal domains [2]. Information process-
ing and management requires intelligence at all
scales, from nano-networks to the World Wide
Web. With such diversification, device and plat-
form heterogeneity exacerbates IoT interoperabil-
ity issues.
The Semantic Web of Things (SWoT) [3] has

promoted the integration of Semantic Web lan-

guages and technologies in IoT contexts, in or-
der to imbue environments with knowledge-based
capabilities. In the SWoT vision, ontology-
based annotations are associated to devices, ob-
jects, and phenomena to describe them in a
rich and structured way, with unambiguous se-
mantics supporting automated reasoning proce-
dures to infer implicit knowledge. The progres-
sion of the IoT toward the IoE calls for a cor-
responding evolution of the SWoT toward a Se-
mantic Web of Everything (SWoE), where se-
mantic technologies permeate and enable interac-
tions among people, things, processes, and data,
from WWW- to micro- and nano-scale. This vi-
sion requires supporting Knowledge Representa-
tion (KR) languages and automated inference on
tiny autonomous devices with very strict process-
ing, memory, and energy constraints. Inferring
implicit knowledge via automated reasoning in In-
ternet of Everything scenarios is useful to grant

Preprint submitted to Journal of Web Semantics March 4, 2022

(groups of) tiny devices with autonomous deci-
sion making, knowledge-based self-coordination
and self-management, as well as timely and un-
obtrusive decision support to end users. In the
SWoE, inference procedures must be available lo-
cally, since the reachability of more powerful com-
panion devices acting as semantic facilitators can-
not be taken for granted. High volatility of de-
vices, resources and data requires quick on-the-
fly processing capabilities, which are not always
available on external devices or cannot tolerate
the latencies of wireless low-power network links
in request-response interactions. After all, fog
computing has shown that a capillary distribution
of data processing can improve efficiency, timeli-
ness, and security of large-scale data collection
and analysis [4]. Reasoning engine designs are
currently oriented to the WWW or mobile de-
vices such as tablets and smartphones. Unfortu-
nately, this is not adequate for the SWoE, where
target platforms include tiny inexpensive sensors
and boards like those embedded in wearable de-
vices or shopfloor and medical equipment.
This paper introduces Tiny-ME 1 (the Tiny

Matchmaking Engine), a SWoE-oriented match-
making and reasoning engine. It exhibits a multi-
platform architecture from the ground up, with a
common core in C language granting both porta-
bility and efficient implementation of Knowledge
Base (KB) management and reasoning services.
On top of this low-level C API (Application Pro-
gramming Interface), three high-level APIs for
working with OWL 2 (Web Ontology Language)
[5] knowledge bases are provided: (i) the OWL
API [6] for Java-based platforms; (ii) the OWL
API for iOS [7] for Objective-C and Swift devel-
opment; (iii) Cowl, a novel lightweight C API for
native C/C++ development in UNIX-like, Win-
dows, and embedded environments.
The reasoner provides standard (Ontology

Classification, Ontology Coherence, Concept Sub-
sumption, and Concept Satisfiability checks) and
non-standard (Concept Abduction, Contraction,
Bonus, Difference, and Covering) inference ser-

1Tiny-ME home: http://swot.sisinflab.poliba.

it/tinyme/

vices on moderately expressive KBs, in an OWL 2
subset corresponding to the Attributive Language
with unqualified Number restrictions (ALN) De-
scription Logic (DL). This choice was made be-
cause standard and non-standard inference algo-
rithms on concept expressions can be carried out
using structural algorithms in polynomial time
and space [8], a property that is particularly well-
suited for heavily resource-constrained devices.
All major desktop and mobile operating sys-

tems (OSes) are compatible out of the box, which
implies that Tiny-ME also runs in Docker 2 con-
tainers, enabling reasoning in microservice ar-
chitectures for Web and Cloud applications: to
this aim, the standard OWLlink [9] protocol for
remote reasoner invocation has been extended,
adding support for the provided non-standard in-
ference services. Furthermore, Tiny-ME is con-
ceived to be easily compatible with most OSes
and platforms with basic C support: in order to
validate this claim, as a case study and illustra-
tive example, it has been ported to the Apache
NuttX 3 real-time operating system (RTOS) for
the Pixhawk 4 open standard platform for Un-
manned Aerial Vehicle (UAV) autopilots. The
NuttX/Pixhawk platform has been chosen be-
cause it exhibits the typical development chal-
lenges of embedded RTOSs, while also introduc-
ing very strict constraints on computational re-
sources. A preliminary performance evaluation
has been then carried out with respect to theKon-
clude, [10], Mini-ME 2.0 [8] and Mini-ME Swift
[11] reasoners on both desktop and mobile devices.
The core contributions of this paper can be

summarized as follows:

• the Tiny-ME SWoE-oriented reasoning and
matchmaking engine, supporting a set of
standard and non-standard inference services
in a moderately expressive OWL 2 fragment
corresponding to the ALN DL;

• a new multiplatform architecture, natively
supporting Windows, Linux, macOS, Docker

2Docker home: https://www.docker.com/
3Apache NuttX home: https://nuttx.apache.org/
4Pixhawk home: https://pixhawk.org/

2

http://swot.sisinflab.poliba.it/tinyme/
http://swot.sisinflab.poliba.it/tinyme/
https://www.docker.com/
https://nuttx.apache.org/
https://pixhawk.org/

containers, Android, and iOS, further mini-
mizing the porting effort to other platforms;

• re-engineered inference procedures optimized
for SWoT contexts;

• Cowl, a new C parser for OWL 2 Full, embed-
ded in Tiny-ME but also released indepen-
dently with a permissive open source license
(Section 3.4) to promote reuse;

• extension of the OWLlink interface for
HTTP-based application-reasoner client-
server interaction, supporting non-standard
inference services for semantic matchmaking;

• a case study on the Pixhawk UAV autopilot
demonstrating (i) the ease of porting to the
Apache NuttX RTOS and (ii) the feasibility
of implementing a simple but useful applica-
tion with a satisfactory expressiveness given
the hardware constraints of the target em-
bedded devices.

Together, these contributions provide a new
worthwhile platform for the realisation of success-
ful ontology-based systems in SWoT/SWoE con-
texts. Moreover, selected contributions like Cowl,
the OWLlink extension, and the multiplatform ar-
chitectural model itself can be mutuated by other
ontology-based software systems for further pur-
poses.
The remainder of this paper is organized as fol-

lows: after related work in Section 2, Section 3
discusses Tiny-ME’s inference services and archi-
tecture in detail, including the proposed OWLlink
extension. The Pixhawk case study follows in Sec-
tion 4, before performance results in Section 5 and
conclusion.

2. Related work

Classical Semantic Web contexts are character-
ized by stable availability of hefty computational
and networking resources. Conversely, in SWoE
scenarios hardware is severely constrained and
information sources are micro-devices scattered
throughout physical environments, so that their
availability is unpredictably intermittent due to

user and device mobility as well as limitations
of wireless communication links and energy sup-
ply. For this reason, batch workloads on very ex-
pressive and complex Knowledge Bases are out of
place in the SWoE, while inference engines should
support quick query processing on relatively small
and simple annotations. These requirements have
a direct impact on the expressiveness of the log-
ical languages to be managed. Each language in
the DL family is distinguished by its set of avail-
able constructs. Including more constructs grants
larger expressiveness, but also leads to an (often-
times steep) increase of computational complexity
of inferences [12]. A trade-off is therefore worth-
while. Historically, the untractable worst-case
complexity of OWL DL stimulated the charac-
terization of OWL 2 profiles, which simplified the
languages and admitted KB axioms, so that effi-
cient algorithms could be adopted while keeping
enough expressiveness for practically relevant use
cases. EL++[13] extended the basic EL DL to suit
various applications, characterized by very large
ontologies with moderate expressiveness. The
proposal included a polynomial-complexity struc-
tural Ontology Classification algorithm, which en-
abled the development of high-performance EL++

classifiers such as ELK [14]. Analogously, one of
the earliest approaches to adapt Concept Con-
traction and Concept Abduction non-standard
inferences to pervasive computing [15] adopted
structural algorithms on acyclic TBoxes in the
AL language, implementing the above algorithms
through a mobile RDBMS query layer.

The earliest generation of mobile and IoT-
oriented inference engines adopted simplified ap-
proaches with respect to existing Semantic Web
reasoners to cope with the limited memory avail-
ability of devices. Pocket KRHyper [16], a Java
Micro Edition library for theorem proving and
model generation based on the hyper tableau cal-
culus, was the earliest example of lightweight in-
ference engine, albeit suffering from the severe
memory limitations of the target platform. The
�OR [17] reasoner implemented a simple resolu-
tion and pattern matching algorithm on a sub-
set of OWL-Lite. Analogously, MiRE4OWL [18]
was a rule-based mobile inference engine leverag-

3

ing OWL-DL semantics, resolved with the classic
RETE algorithm.

More recently, e�orts were devoted to minia-
turize reasoning engines for embedded devices.
In [19] consequence-drivenEL+ reasoning was
ported to a Programmable Logic Controller
(PLC) for industrial automation. The modu-
lar rule-based reasoner in [20] combined selective
rule loading and a two-stage RETE algorithm;
it exhibited satisfactory performance on theSun
SPOT sensor platform for small- and medium-
sized ontologies.

A second group of reasoners is the one ported
from conventional computer platforms to mobile
devices, leveraging the increasing availability of
computational resources. In [21], �ve Java OWL
reasoners have been adapted for Android, albeit
with not-negligible e�ort. In [22] ELK has been
re-engineered from Java Standard Edition (SE)
to Android, minimizing memory consumption and
implementing support for multi-core CPUs. Na-
tive mobile inference engines also exist.Mini-ME
2.0 [8] is an Android-oriented matchmaker and
reasoner compatible with Java SE.

Semantic matchmaking is de�ned as the prob-
lem of �nding the most relevant element in a set
of resources w.r.t. a given request, where both
request and resources are represented as satis-
�able concept expressions w.r.t. a common set
of axioms T in a DL. The output of semantic
matchmaking consists of a conjunction of con-
cepts, each with a score representing its seman-
tic relevance w.r.t. the submitted query. Be-
sides resource discovery, matchmaking can sup-
port data stream analytics, e.g., statistical clas-
si�cation problems could be converted to seman-
tic matchmaking problems. As an example, in
[23] features of samples were annotated with con-
junctive concept expression fragments and target
classes with concept expressions, both referring
to a common ontology. These two use cases are
highly relevant in SWoT/SWoE scenarios, char-
acterized by volatile data and fragmented infor-
mation [24, 25, 26]. Tiny-ME refers to the the-
oretical framework grounded on the classi�cation
of match types proposed in [27]. Similar classi�-
cations were suggested in [28] and [29]. Di�ering

from those earlier works, however, the framework
adopted by Tiny-ME has a di�erent order of pref-
erence among the various non-exact match cat-
egory, with full/subsume being the favorite one
due to not needing to hypothesize additional in-
formation about the resource, as explained in Sec-
tion 3.2. Furthermore, the adopted framework en-
ables ranking di�erent resources within the same
match category. More recent works [30, 31] are
oriented to resource discovery in the SWoT and
combine reasoning and quantitative contextual
attributes in utility functions .

[32] presents a rule engine for Android intro-
ducing the novelRETEpool algorithm on OWL 2
RL rulesets, capable of balancing memory usage
and time performance.Mini-ME Swift [11] is the
�rst OWL reasoner for iOS, re-designed from the
above Mini-ME with the OWL API for iOS [7].
Tiny-ME expands on ideas behind Mini-ME and
Mini-ME Swift by introducing multiple novelties:
a completely new multiplatform architecture (Sec-
tion 3.2); re-engineered and optimized inference
procedures (Section 3.1); a new OWL 2 parser in
C, named Cowl, released with a permissive open
source license (Section 3.4); a new OWLlink inter-
face extending the speci�cation for non-standard
inference services (Section 3.3).

Besides Java-based OWL tools, cross-platform
reasoners projects include the mobile semantic
rule engine evaluation framework in [33], devel-
oped in JavaScript with thePhoneGap5 Software
Development Kit (SDK), and its successorMo-
biBench [34]. The former supported integration
with rule engines written either in JavaScript or
natively for one of the PhoneGap target plat-
forms (Android, iOS, Windows 8.1), the latter
also supports Java engines through theNashorn
JavaScript interpreter included in Java SE (ver-
sion 8 and later). The Owlready2 library [35]
implements OWL KB manipulation and object-
oriented mappings in Python, adoptingHermiT
[36] as backend for inferences.

Concerning automated reasoning at a Web
scale, algorithm optimization for distributed exe-
cution in Cloud environments has been �rst pro-

5PhoneGap home:https://phonegap.com/

4

Table 1: Features of related reasoning systems
Features Platforms

Name DL
Algorithm

family
Matchmaking Explanation Language Web/Cloud Desktop Mobile Embedded

� OR
[17]

OWL-Lite - Pattern
matching

Full Java JVM JamVM

COROR
[20]

SHOIN (D) RETE Full Java JVM Sun SPOT

ELK
[22]

EL+ Consequence
based

Java JVM Android

HermiT
[36, 21]

SROIQ (D) Tableaux Full Java
OWLLink

API
JVM Android

JFact
[21]

SROIQ (D) Tableaux Full Java
OWLLink

API
JVM Android

Konclude
[10]

SROIQV (D) Hybrid Full C++
OWLLink

built-in
Native

Mini-ME
[8]

ALN Structural
Full,

Approximated
Yes Java

OWLLink
API

JVM Android

Mini-ME
Swift [11]

ALN Structural
Full,

Approximated
Yes Swift macOS iOS

MiRE4OWL
[18]

SHOIN (D) RETE Full C++ Native
Windows
Mobile

Pellet
[21]

SROIQ (D) Hybrid Full Yes Java JVM Android

PLC-based
[19]

EL+ Consequence
based

SCL
Siemens

SIMATIC
Pocket

KRHyper [16]
ALC + Tableaux Full Java JVM J2ME

RETEpool
[32]

OWL-RL RETE Full Java JVM Android

Tiny-ME ALN Structural
Full,

Approximated
Yes

C, Obj-C,
Java

OWLLink
API

Native,
JVM

Android,
iOS

Any with
C support

posed byWebPIE [37]. Tiny-ME aims to sup-
port cloud environments through an extension of
the OWLlink protocol [9] for client-server inter-
action: the standard speci�cation is supported by
Konclude [10] and many more Semantic Web rea-
soners.

Table 1 summarizes relevant features of related
reasoning systems, highlighting Tiny-ME's contri-
butions. Some columns require clari�cation: the
\ Full " label refers to systems supporting onlyex-
act or full/subsume match degrees [28], thus re-
quiring that resources are subsumed by request;
the \ Approximated" label marks systems that are
able to support further match degrees likepoten-
tial/intersection and partial/disjoint , respectively
when subsumption does not hold and when the
conjunction of request and resource is unsatis�-
able. Finally, the Explanation column refers to
the ability of systems to provide formal justi�ca-
tions for their outcomes,e.g., \why" subsumption
does not hold between two concept expressions.

3. Reasoning in the Semantic Web of Ev-
erything

When designing a reasoner which can seam-
lessly adapt to a wide range of use cases, di�-
culties arise from the need for it to be simulta-
neously
exible, easy to use and maintain, and
highly resource-e�cient. Neglecting even just one
of these requirements leads to making the appli-
cability to SWoE use cases unlikely. In order to
meet the above goals, the design of Tiny-ME has
followed a few fundamental criteria:

ˆ Inference services should be implemented
only once and should work on the widest pos-
sible platform range. This is because reason-
ing algorithm porting is hard to carry out,
particularly when optimization comes into
play: shared implementations signi�cantly
improve the overall system maintainability.

ˆ The implementation of inference services
must be very e�cient, especially for what
concerns memory usage. This really enables

5

deployment on tiny resource-constrained de-
vices.

ˆ Applications should have simple APIs to use
the reasoner. This leads to the exposure of
APIs in multiple target languages. If an API
is not available for a given language, it should
be possible to create it with reasonable e�ort,
based on the existing implementation of in-
ference algorithms. This ensures the system
is
exible enough and easy to use.

ˆ Knowledge representation and reasoning
functionalities should be separated in dis-
tinct modules. KR comes at a signi�cant
cost in terms of computational resources, as
OWL data models and parsers tend to be
rather large, both code- and data-wise. In
common interchange syntaxes for the Seman-
tic Web, language constructs are basically
strings, which take up signi�cant amounts
of memory and sometimes are not strictly
needed in reasoning procedures. Further-
more, the OWL 2 speci�cation mandates
support for the RDF/XML [38] serialization,
which implies the presence of XML parsers,
further increasing code size and memory de-
mand.

The subsections hereafter detail the overall rea-
soner architecture, focusing on the available infer-
ence services, the proposed OWLlink extension,
and the platform-speci�c APIs.

3.1. Language and inference services

The proposed system implements polynomial-
complexity structural algorithms on ALN con-
cept expressions (see Table 2 for a list of sup-
ported constructs), based on the conceptunfold-
ing and Conjunctive Normal Form (CNF) nor-
malization preprocessing steps [8]. Basically, con-
cept unfolding recursively expands terminological
axioms in the ontology (a.k.a. TBox, Terminolog-
ical Box) within concept expressions, so that the
TBox is not needed anymore during subsequent
inferences.

In order to have �nite unfoldings, and to en-
sure polynomial time and space complexity of in-

Table 2: ALN constructs supported by Tiny-ME

Construct Syntax
Top >
Bottom ?
Intersection C u D
Atomic negation : A
Universal quanti�cation 8R:C
Number
restrictions

� nR
� nR

Atomic inclusion A v C
Atomic equivalence A � C

ference procedures, TBoxes are subject to the fol-
lowing limitations [30]:

ˆ they must be acyclic, though Tiny-ME par-
tially relaxes this requirement by admitting
told subsumption cycles[39];

ˆ the left-hand side (LHS) of inclusion (v) and
de�nition (�) axioms must be atomic,i.e.,
general concept inclusionsare not currently
supported;

ˆ if an atomic conceptA is the LHS of a def-
inition axiom, then it cannot be the LHS of
any other inclusion or de�nition axioms.

CNF normalization translates the unfolded con-
cept expression in a canonical form that preserves
its semantics. In ALN CNF, every concept ex-
pression is either? (Bottom a.k.a. Nothing) or
the conjunction (u) of:

ˆ (possibly negated) atomic concepts;

ˆ greater-than (�) and less-than (�) number
restrictions, no more than one per type per
role;

ˆ universal restrictions (8), no more than one
per role, with �llers recursively in CNF.

Structural algorithms for standard reasoning
tasks are well known (see [12], 2.3.1). InALN
DL, once concept expressions have been unfolded
and normalized, comparisons between them ba-
sically come down to set operations. As an ex-
ample, let us consider the followingALN TBox

6

Figure 1: Semantic matchmaking framework

(named TBex):

A � 8 P:D u (� 3P)

B v 8 P:D

C v B u (� 2P)

By applying unfolding and CNF normalization,
we get the following concept expressions (CEs):

A ! 8 P:D u (� 3P)

B ! B u 8P:D

C ! B u C u 8P:D u (� 2P)

It can be noticed B and C appear among the
conjuncts of their own unfolded concept expres-
sions, while A does not: as explained in [12,
§9.2.3], in ALN DL an atomic concept must be
included in its own unfolding i� it is the LHS of
an inclusion axiom, while it is omitted if it is the
LHS of an equivalence one.

Let us suppose we need to check whetherA v C
holds: after unfolding and normalizing, we just
need the CEs ofA and C, i.e., the whole TBox is
not required anymore. In this case,A v C holds
because8P:D is in both the CEs ofA and C, and
(� 3P) is more speci�c than (� 2P).

Tiny-ME supplies standard Subsumption and
Satis�ability checks over concept expressions.

Satis�ability is trivially checked by performing
CNF normalization [8]: as previously stated, a
CNF-normalized concept expressionA is either? ,
or the conjunction of an arbitrary number of sup-
ported constructs. In order to check whetherA is
satis�able, it is su�cient to verify that it is not ? .
Subsumption exploits the classic structural al-
gorithm in [12]. Given two CNF-normalized con-
cept expressionsR and S, to assess ifR v S
holds:

1. if R � ? , then R v S.
2. for each atomic conceptA in S, if A is not in

R, then R 6vS.
3. for each negated atomic concept: A in S, if

: A is not in R, then R 6vS.
4. for each roleP such that � xP is in S, if

� yP with x < y is in R, then R 6vS.
5. for each roleP such that � xP is in S, if

� yP with x > y is in R, then R 6vS.
6. for each roleP such that 8P:E is in S, if

8P:F with F 6vE is in R, then R 6vS.
7. otherwise,R v S.

Standard inference services are not enough in
scenarios requiring more than just a Boolean an-
swer, such as in matchmaking or negotiation.
In those cases,non-standard Concept Abduc-
tion and Concept Contraction [30] are more use-
ful, as they provide justi�cations for (missed)
subsumption and (un)satis�ability, in the Open
World Assumption. Tiny-ME supports the se-
mantic matchmaking framework sketched in the

ow chart of Figure 1 and outlined hereafter.

Let us consider a set of axiomsT in ALN , and
R, S two concepts in L {representing a request
and aresource, respectively{ both satis�able in T .
A preliminary Consistency check is performed
to assess whetherR u S is satis�able w.r.t. T ; in
formulae, T j= R u S 6v ?. If the check fails the
resource is apartial match for the request, and
Concept Contraction (CC) can be computed.
Its output consists of a pair of conceptshG; K i
such that T j= R � G u K , and T j= K u S 6v ?.
Basically, Contraction determines which part ofR
clashes withS. By retracting only con
icting re-
quirementsG (for Give up) from R, an expression
K (for Keep) remains,i.e., a contracted version of

7

the original request. The solutionG to Contrac-
tion explains \why" the conjunction of R and S
is not satis�able, providing a way to move from a
partial match to a potential matchsituation. Hav-
ing R and S unfolded and CNF-normalized con-
cept expressions inALN , CC(R; S) is computed
by means of the following structural algorithm:

1. setK := R and G := > ;
2. for each atomic conceptA in K , if : A is in

S, then moveA from K to G;
3. for each negated atomic concept: A in K , if

A is in S, then move: A from K to G;
4. for each role (object property)P such that

� xP is in K and � yP is in S with y < x ,
replace� xP in K with � yP and put � xP
in conjunction with the concept expression
for G;

5. for each roleP such that � xP is in K and
� yP is in S with y > x , replace� xP in
K with � yP and put � xP in conjunction
with the concept expression forG;

6. for each roleP s.t. 8P:E is in K and 8P:F is
in S, if 9 � xP with x > 0 is either inK or in
S, then compute Contraction recursively on
the �llers: hG0; K 0i = CC(E; F), put 8P:G0

in conjunction with the concept expression
for G and replace8P:E with 8P:K 0 in the
concept expression forK .

For example, referring to the above TBex,
hG; K i = CC(A; � 2 P) = h� 3 P; � 2 Pi .

Concept Abduction (CA) can be computed
in case of potential match, which occurs ifS does
not clash with R but is not subsumed by it, i.e.,
T j= R u S 6v ? and T j= S 6v R. The out-
put of CA consists of a conceptH 2 L such that
T j= S u H v R and S u H is satis�able in
T . It should be noted CA and the other inference
services for semantic matchmaking in Tiny-ME
are de�ned under the Open World Assumption
[30], i.e., missing information in a concept expres-
sion is not equivalent to negation, but it simply
represents an unspeci�ed constraint,e.g., because
unknown or deemed irrelevant. The solutionH
(for Hypothesis) can be interpreted as what is re-
quested inR and not speci�ed in S, providing an
explanation for missed Subsumption and a way

to move from a potential to a full match (a.k.a.
subsume match[28, 29]), which is the desired out-
come of the matchmaking framework and occurs
when S v R, i.e., all features in the request are
provided by the resource6. Having R and S un-
folded and CNF-normalized concept expressions
in ALN , the structural algorithm for CA(R; S)
is:

1. setH := > ;
2. for each (possibly negated) atomic conceptA

in R, if 6 9B in S s.t. B v A, then put A in
conjunction with the concept expression for
H ;

3. for each roleP such that � xP is in R, if
� yP is not in S or � yP is in S with y <
x, then put � xP in conjunction with the
concept expression forH ;

4. for each roleP such that � xP is in R, if
� yP is not in S or � yP is in S with y >
x, then put � xP in conjunction with the
concept expression forH ;

5. for each roleP s.t. 8P:E is in R and 8P:F is
in S, then compute Abduction recursively on
the �llers: H 0 = CA(E; F) and put 8P:H 0 in
conjunction with the concept expression for
H .

For example, referring to the aboveTBex, H =
CA(A; B) = � 3 P.

Concept Bonus (CB) is also useful in match-
making settings, since a resourceS could contain
features not requested inR {possibly because the
requester was not aware of them or did not care{
which could be exploited in a query re�nement
process. CB extracts and returns aBonus con-
cept B from S, denoting what the resource pro-
vides even though the request did not ask for it.
The algorithm for �nding the Bonus B of S w.r.t.
R is the same for the CA problem whereR and
S are swapped,i.e., R acts as resource andS as
request.

6Exact match, occurring when S � R, is obviously the
best possible outcome, but full match is equally desirable
from the point of view of requesters, since all their prefer-
ences are met.

8

The ALN CNF for concept expressions induces
the de�nition of a metric space with a norm op-
erator k � k. In the matchmaking framework sup-
ported by Tiny-ME, the CNF norm of G and H
then represents a semantic distancepenalty for
CC and CA, respectively, used to rank resources
w.r.t. a given request. Similarly,kBk provides a
relevance measure for the Bonus. In [30] penalty
values have been proposed where:

1. each (possibly negated) atomic concept
counts as 1;

2. modi�ed number restrictions are weighted as
the ratio of the di�erence of cardinality in R
and S on the same role w.r.t. the cardinality
value in R (if R lacks a number restriction on
that role, the penalty is 1);

3. universal restriction �llers computed recur-
sively are counted like above.

For CA, CB, and CC, the summarized algo-
rithms aim to a minimality criterion, since one
usually wants to hypothesize or give up as little
as possible. Conversely, a maximality criterion
is adopted for theConcept Di�erence reason-
ing service (CD), which de�nes a way to subtract
information in a concept description from an-
other one: in the original de�nition by Teege [40],
if T j= R v S, then the output of di�erence
D = CD(R; S) is a concept D 2 L such that
R � S u D. In that case, one typically wants to
subtract as much as possible. In Tiny-ME, the ap-
plicability of CD has been extended from the full
match (i.e., subsumption) case to potential and
partial matches as well, by exploiting CC and CB.
In detail, given two unfolded and CNF-normalized
ALN concept expressionsR and S, CD(R; S) is
computed structurally as in what follows:

1. if Ru S v ? , i.e., R and S are not consistent,
then use Concept Contraction to retrieve the
part K of S that is consistent with R. Oth-
erwise,K := S.

2. return the Concept Bonus betweenK and R:
D := CB(R; K).

For example, referring again to TBex,
CD(B; A) = B and CD(A; B) = � 3 P.

While CA, CB, CC, and CD are useful in
one-to-one discovery, matchmaking and negotia-
tion scenarios, Tiny-ME also includes theCon-
cept Covering (CCov) non-standard inference
for many-to-one composition of a set of elemen-
tary instances to answer complex requests [8]. Ba-
sically, CCov takes a set of resources and a request
and aims to (i) cover (i.e., satisfy) features ex-
pressed in the request as much as possible through
the conjunction of resources, and (ii) provide an
explanation of the possibly uncovered part. In
formulae, given a concept expressionR (request)
and a set of concept expressionsS = f S1, S2, ...,
Sng in a KB (available resources), whereR and
S1, S2, ..., Sn are satis�able in the reference on-
tology T , the output of CCov is a pair hSc; H i
where Sc � S contains concepts inS forming a
(possibly incomplete) covering ofR w.r.t. T and
concept H is the (possible) part of R not cov-
ered by elements inSc. The structural algorithm
for CCov, givenf R, S1, S2, ..., Sng unfolded and
CNF-normalized, is:

1. setS := ; and H := R;
2. repeat the following steps untilSmax � > :

(a) set rmin := kH k and Smax := > ;
(b) for each Si in S, if Si u R 6v ? (i.e., Si

and R are Consistent) andCD(Si ; H)
6� > (i.e., Si coversH), then compute
H i ; r i := CA(H; Si). If r i < r min , up-
date rmin := r i , Smax := Si and Hmax :=
H i ;

(c) if Smax 6� > , add Smax to Sc, remove it
from S, and setH := Hmax ;

3. return Sc; H .

In step 2, each iteration of the loop computes
H i and r i respectively as the CA hypothesis and
penalty with respect to the remaining uncovered
part H . The resource with minimal penalty,i.e.,
with maximal covering of H , is added to the set
Sc, until no resources further increase the cover-
ing.

Tiny-ME can be also exploited in more general
knowledge-based applications, as it providesClas-
si�cation and Coherenceservices over ontologies.

Ontology Classi�cation computes the over-
all concept taxonomy induced by the subsumption

9

relation, from > (Top a.k.a. Thing) to ? . The
system adopts a variant of theenhanced traver-
sal algorithm in [41], with a number of optimiza-
tions, such as caching of subsumption check re-
sults, exploitation of told subsumers and disjoints
[39], and caching of unfolded and normalized con-
cept expressions [11].

Ontology Coherence involves checking that
all named concepts in the TBox are satis�able
[42]. As in [11], instead of computing it directly
by checking the satis�ability of all TBox concepts,
Tiny-ME adopts a variant of the Classi�cation al-
gorithm that stops as soon as an unsatis�able con-
cept is detected. This is preferred over the naive
approach, as most of the runtime of structural in-
ference algorithms is spent in unfolding and CNF
normalization. Since Classi�cation avoids Sub-
sumption checks (and thus unfolding and normal-
ization) as much as possible, this generally results
in signi�cantly improved performance.

3.2. Architecture

High-level architecture. The overall high-
level architecture is reported in Figure 2 and de-
scribed in what follows:

ˆ Core layer: it is written in standard C11
with no compiler extensions nor platform-
speci�c API calls, and contains a highly opti-
mized implementation of standard and non-
standard inference algorithms, along with
their backing data structures. This layer has
been carefully designed to be independent
from the way knowledge is represented or
stored: ALN OWL entities (i.e., named con-
structs such as classes, object properties, and
named individuals) are encoded as numerical
identi�ers, called entity pointers, and their
string representation is never required during
reasoning. This feature is exploited by the
Axiom provider interface the reasoner queries
to retrieve structured representations of KB
axioms. The Core layer provides an optional
loggingAPI, querying the String provider in-
terface for the string representations of entity
pointers. In a distributed SWoE architecture,
some computing devices may not need string

representation capabilities, or may not have
memory enough to deal with it: in that case,
they can just implement the Axiom provider
API and still be able to carry out reasoning
tasks on (unlabeled) entities.

ˆ Platform-speci�c APIs: the modularity of
the architecture allows for multiple APIs
implemented in di�erent programming lan-
guages, as described in Section 3.4. In gen-
eral, the adoption of C11 for the reason-
ing core enables a wide variety of potential
higher-level APIs, as the runtimes of most
programming languages o�er at least some
basic interoperability with C code.

Core architecture. The reasoning core can
be compiled both as static or dynamic linking li-
brary, and can run on any platform for which a
C compiler exists. It is important to note that,
while C lacks object-orientation, it is still possi-
ble to build components that have high cohesion
by logically bundling structured data and func-
tions that operate on them. This approach has
been adopted throughout the core, resulting in a
highly modular and easily maintainable codebase.
The main components of the core architecture are
illustrated in Figure 3 and described hereafter:

ˆ TmeAxiomProvider: retrieval of axioms from
KBs is abstracted away by means of this in-
terface. Implementors must essentially map
ALN OWL class expressions toTmeSemDesc
structures, described hereafter.

ˆ TmeStringProvider: returns string repre-
sentations of entity pointers, making it possi-
ble to visualize class expressions when using
the built-in logging API.

ˆ TmeReasoner: implements reasoning tasks
over ontologies, namely Classi�cation and
Coherence check, and supplies a facade API
to inference services on class expressions,
which are in turn provided by lower-level
components.

ˆ TmeKB:exposes KB management primitives,
which mostly involve loading and preprocess-
ing class expressions via unfolding and CNF

10

Figure 2: High-level architecture

Figure 3: Core architecture

normalization. Both are lazy: an internal
cache keeps track of whether a concept has
been only unfolded, or both unfolded and
normalized, in order to avoid unnecessary
computations [11].

ˆ TmeTaxonomy:allows manipulating the con-
cept hierarchy resulting from Classi�ca-
tion, supporting insertion, deletion, merging,
and retrieval of ancestors and successors of
classes.

ˆ TmeSemDesc:the numerical representation
of an ALN class expression in CNF. It mod-
els the conjunction ofCCN , C� , C� , C8 com-
ponents storing (possibly negated) atomic
classes and minimum cardinality, maximum
cardinality, and universal object property re-

strictions, respectively. Class expression ele-
ments are stored in vectors, whose type de-
pends on the kind of atom. In particular,
atomic classes and their negation are repre-
sented by TmeEntityPtr , a typedef for an
integer type; TmeCardinalityRole models
unquali�ed number restrictions with a prop-
erty identi�er (TmeEntityPtr) and a cardi-
nality (of integer type); universal quanti�ers
are represented byTmeUniversalRole, using
an integer type for the property identi�er and
a pointer to the �ller. The whole class de-
scription is therefore made of just integers,
allowing for a compact memory representa-
tion and lower computational overhead.

ˆ TmeAbduction, TmeContraction,

11

TmeBonus, TmeComposition: model
the result of CA, CB, CC, and CCov, re-
spectively. All these structures also include
a penalty score, as explained in Section 3.1.

3.3. Non-standard inference services and
OWLlink extension

In order to support client-server interaction in
Web contexts as well as in microservice architec-
tures for Cloud and Edge Computing,Tiny-ME
leverages and extends the standard OWLlink pro-
tocol [9]. OWLlink provides a declarative OWL
reasoner interface for asserting axioms in KBs
and requesting standard inferences. Tiny-ME
supports the Subsumption, Satis�ability, Classi-
�cation, and Consistency/Coherence check. Fur-
thermore, a novel OWLlink extension7 is pro-
posed here (following the o�cial protocol exten-
sion guidelines [43]) to support non-standard rea-
soning. Based on the inference de�nitions recalled
in Section 3.1, new request types and their related
replies (highlighted with the same color in the di-
agram in Figure 4) have been de�ned, along with
the HTTP/XML binding:

ˆ GetAbduction, GetBonus, GetDi�erence:
used to invoke CA, CB, and CD, respec-
tively. These messages require twoExpres-
sionOrIndividual arguments, corresponding
to either an OWL class expression or a named
individual in the reference KB,i.e., a request
R and a resource S. Replies to these infer-
ences consist of: (i) an OWL class expression,
representing the uncovered part of a request
in CA, the additional information provided
by a resource in CB or the remaining ex-
pression after a CD, respectively; (ii) a non-
negative penalty score, that is the semantic
distance ofR from S, computed as the CNF
norm of the returned class expression, to be
intended as theexplanation of the numerical
result.

ˆ GetContraction: also in this case, the mes-
sage requires twoExpressionOrIndividualar-

7XML Schema available at http://swot.sisinflab.
poliba.it/reasoners/

guments modelling a requestR and a re-
sourceS. The response object consists of two
OWL class expressions,i.e., the con
icting
requirementsG (Give up) and the contracted
(compatible) versionK (Keep) of R, with a
penalty score measuring the incompatibility
degree of betweenR and S.

ˆ GetCovering: the request for a CCov non-
standard reasoning service includes anEx-
pressionOrIndividual argument R and one
or more OWL individuals in the KB acting
as available resources. This service replies
with the subset of the input resources able
to cover the request as much as possible, to-
gether with an OWL class expression of the
uncovered part (possibly>) and a penalty
score evaluating the percentage ofR that has
not been covered.

A fork of the Java-basedOWLlink API 8 [44]
compatible with OWL API 5 has been developed
to implement the extended interface9. It should
be pointed out that Tiny-ME currently does not
support Tell OWLlink requests to assert axioms
to a KB; they are left for a future update. Load
Ontologies requests are supported, instead, for
loading a KB from a URL. A Docker�le is avail-
able on Tiny-ME's homepage to build a Docker
container featuring the reasoner working as an
OWLLink server.

3.4. Platform-speci�c APIs

The proposed reasoner currently implements
the following platform-speci�c APIs:

ˆ C: the native interface of the system. It ex-
poses the public API of the reasoning core,
while implementing the axiom and string
providers by means of theCowl10 library.

8OWLlink OWL API adapter: https://github.com/
ignazio1977/owllink-owlapi

9OWLlink matchmaking extension
Git repository: https://github.com/sisinflab-swot/
owllink-matchmaking-extension

10Cowl home: http://swot.sisinflab.poliba.it/
cowl/

12

Figure 4: OWLlink extension { Request and response objects

Cowl is a lightweight C11 interface for a com-
plete OWL 2 data model and provides sup-
port for deserializing ontologies in functional-
style syntax [45]. This solution can be used
on any platform providing a C compiler
and should be preferred for performance-
critical and embedded software development,
for which C is currently the most adopted
language [46].

ˆ Java: the interface for Java SE and An-
droid runtime environments. Axiom and
string providers are implemented through the
OWL API [6]. The data model is basi-
cally a mapping of Java classes and meth-
ods to the above C structures and related
functions through the Java Native Interface
(JNI) 11. As an example, inference services
are provided via the Reasoner class, which
wraps the nativeTmeReasonerstructure and
implements OWL API's OWLReasonerinter-
face; class expressions are modeled by the

11Java Native Interface documentation: https:
//docs.oracle.com/en/java/javase/13/docs/specs/
jni/index.html

SemanticDescription class, which maps the
native TmeSemDescstructure, and a similar
approach is adopted for other logic construc-
tors. Special care has been devoted to the
management of native memory: Java objects
backed by native structures are tracked by
the NativeMemoryManager, exploiting phan-
tom references12 to trace when they are
about to be garbage-collected so as to invoke
native deallocators.

ˆ Objective-C: the preferred interface for iOS
and macOS applications. The axiom and
string providers are implemented using the
OWL API for iOS [7]. Objective-C class in-
stances and methods map lower-level C struc-
tures and functions, although the wrapping
logic is thinner than that of the Java API:
since Objective-C is a strict superset of C,
no additional interfaces are required, and
this results in simpler architecture and im-
proved performance (see Section 5). Memory

12PhantomReference documentation: https:
//docs.oracle.com/en/java/javase/13/docs/api/
java.base/java/lang/ref/PhantomReference.html

13

management is also greatly simpli�ed, as the
presence ofAutomatic Reference Counting
(ARC) 13 and reliable �nalizers14 allows tying
the lifetime of C allocations to the Objective-
C wrappers.

Tiny-ME also runs on Linux-basedDocker15

containers with either the C or the Java API. No
modi�cation is needed, and the reasoner can be
invoked remotely through OWLlink.

4. Case study: hazard risk detection on
Pixhawk embedded drone autopilots

In order to validate the portability of the
proposed reasoner and its suitability to SWoE
resource-constrained devices, an experimental
installation has been attempted to the 3DR
IRIS+ 16 UAV (a.k.a. drone), equipped with aPix-
hawk 117 autopilot (i.e.,
ight controller). This
unit is equipped with a STM32F42718 system-
on-chip, including a 180 MHz ARM Cortex
M4 CPU and 256 kB of SRAM. The autopilot
runs the PX4 19 FMUv2 �rmware on the Apache
NuttX RTOS, supporting the development of
user-de�ned applications and modules20.

Basically, development requires con�guring the
CMake build system on the computer used for
cross-compilation, by specifying the location of
source �les and instructing it to build and de-
ploy the modi�ed �rmware to the Pixhawk, to be
connected via USB, as shown in Figure 5.

The C interface of Tiny-ME has been embedded
in a command-line application runnable through

13ARC documentation: https://clang.llvm.org/
docs/AutomaticReferenceCounting.html

14NSObject documentation: https://developer.
apple.com/documentation/objectivec/nsobject

15Docker: https://www.docker.com/
16IRIS+ home: https://3dr.com/support/articles/

iris/
17Pixhawk 1 home: https://docs.px4.io/v1.9.0/

en/flight_controller/pixhawk.html
18STM32F427 home: https://www.st.com/en/

microcontrollers-microprocessors/stm32f427-437.
html

19PX4 home: https://px4.io
20PX4 developer documentation: https://dev.px4.io

Figure 5: Testbed setup

the NuttX shell. The port has just required con-
�guring the build system: notably, no source code
changes have been needed to successfully compile
the reasoner. Runtime tests have shown the cor-
rectness of the operation.

Subsequently, in order to assess on-board rea-
soning feasibility and usefulness of available in-
ferences and language expressiveness in a repre-
sentative scenario, a case study has been con-
ducted on UAV-based detection of �re and explo-
sion risk from gas or vapor. According to the Eu-
ropean Union (EU) Directive 2014/34/UE,21 risk
exists if the following conditions are true: (i) con-
centration is higher than the substance-speci�c
Lower Explosion Limit (LEL), de�ned as the low-
est value able to produce �re in the presence of an
ignition source; (ii) for a gas, oxygen concentra-
tion is higher than the Limiting Oxygen Concen-
tration (LOC), de�ned as the value below which
combustion cannot occur; (iii) for a vapor, air
temperature is higher than the substance-speci�c

ashpoint threshold.

Figure 6 shows the upper-level classes of the
OWL ALN KB 22 (292 axioms, 73 classes, 13 ob-
ject properties and 27 individuals) modeled for
the case study. The UAV is endowed with a global
navigation satellite system antenna as well as sen-
sors for temperature, atmospheric pressure, wind
speed, oxygen concentration, and the concentra-
tion of each substance to be monitored. A pe-

21Directive 2014/34/UE: https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=celex:32014L0034

22KB available at http://swot.sisinflab.poliba.
it/onto/drone_risk_detection

14

Figure 6: Classes in the KB modeled for the case study

riodic task has been scheduled on the UAV to:
(i) collect values from on-board sensors and pre-
process them; (ii) exploit Tiny-ME to compose a
class expression describing relevant quantities for
each monitored substance; (iii) perform semantic
matchmaking w.r.t. KB individuals representing
risk conditions. Basically, the main thread gath-
ers values from sensors and preprocesses them,
based on a set of thresholds and other simple �l-
ters. For each piece of data, Tiny-ME is used
to instantiate a conjunct referring to the class
of the ontology corresponding to the data value
and then it is exploited again to compose a con-
junctive expression. Finally, reasoning is invoked
for semantic matchmaking. In Figure 6, classes
of explosive or
ammable atmosphere conditions
for the considered substances are highlighted in
blue, while environmental features which in
u-
ence risk levels are highlighted in green. For ex-
ample, let us consider a 6g=m3 methane con-
centration, 1 m=s wind speed, and 15% oxygen
concentration: based on class de�nitions in the

ontology as derived from the EU directive, this
produces the following annotation (reported in
Manchester syntax [47]):

R: MediumConcentration Methane and
HighOxygenConcentration Methane and
LowVentilation Methane.

As said before, by relying on a set of prede�ned
thresholds, Tiny-ME instantiates a conjunct for
every monitored substance, each referring to
one environmental feature class in the ontology.
Hence, classes appearing inR are de�ned in the
ontology as:

MediumConcentration Methane � Methane
and (hasConcentration only g/m3) and
(hasConcentration min 6 owl:Thing) and
(hasConcentration max 11 owl:Thing).
HighOxigenConcentration Methane �
Methane and (withOxygenConcentration
some owl:Thing) and
(withOxygenConcentration only
((hasOxygenConcentration only percent)

15

and (hasOxygenConcentration min 14
owl:Thing))).
LowVentilation Methane � Methane and
(withWindSpeed some owl:Thing) and
(withWindSpeed only ((hasSpeed only m/s)
and (hasSpeed max1 owl:Thing))).

As one may notice, Tiny-ME does not sup-
port datatype properties, since it is based on
the ALN DL. Hence, the semantics of numeri-
cal data properties is approximated through un-
quali�ed number restrictions, treated in reason-
ing algorithms as described in Section 3.1. Af-
ter the above semantic labeling, the UAV per-
forms matchmaking ofR with all KB individuals
that are instances ofExplosiveAtmosphere and
FlammableAtmospheresubclasses, such asExplo-
sive methaneand Flammablemethane. For each
substance of interest, this stage allows inferring if
conditions for �re or explosion are met, accord-
ing to environmental parameters monitored and
modeled in R. For each individual, �rst of all
the UAV uses Tiny-ME to check if it is consistent
with R, i.e., if their conjunction is satis�able. If
the check fails, then surely the current situation
does not pose a risk. Otherwise, Concept Abduc-
tion is invoked to compute the semantic distance
d between the monitored situation and the risk
model represented by the speci�c individual. It is
useful to recall that each KB individual is consid-
ered as a request in the matchmaking framework
described in Section 3.1, whileR is treated as a re-
source. This entails that the semantic distanced
represents \how much" is missing fromR to fully
satisfy risk conditions. The thresholdd = 4:0 has
been determined for the case study, based on the
algorithm for penalty computation in Section 3.1
and the adopted KB modeling patterns. Below
this threshold, a risk is recognized and the UAV
issues an alert.

In particular, explosion risk has been tested for
all substances before �re risk, as the former re-
quires raising a higher-severity alert. Following
up the above example, the KB contains these two
risk pro�les for methane:

1. Explosivemethane:
HighConcentration Methane
and HighOxygenConcentration Methane

and LowVentilation Methane
2. Flammablemethane:

LowVentilation Methane
and MediumConcentration Methane and
HighOxygenConcentration Methane

The compatibility check between R
and Explosivemethane fails, as class
HighConcentration Methane is de�ned
as having a LEL of 12 g=m3, while
MediumConcentration Methane has a value
between 6g=m3 and 11g=m3:

HighConcentration Methane � Methane
and (hasConcentration only g/m3) and
(hasConcentration min 12 owl:Thing)

The descriptions of the two classes have num-
ber restrictions with disjoint intervals on the same
property, therefore they are disjoint; this im-
plies that explosion risk is lacking. Conversely,
Flammablemethane v R and CA detects a full
match (d = 0), i.e., semantic distance below the
given threshold. As a consequence, the UAV will
raise a �re alert related to the methane substance.

Loading the case study KB has required cop-
ing with strict Pixhawk 1 memory limitations, by
means of two actions: (i) disabling all not-relevant
modules from the default FMUv2 �rmware con-
�guration, e.g., debugging and audio control; (ii)
encoding the KB to Protocol bu�ers binary for-
mat23 with the nanopb library 24, which features
a compact code size. This has not only allowed
downsizing the KB from� 85kB (in OWL 2 func-
tional syntax) to � 2:1 kB , but also unloading
the Cowl parser from memory. Early quantitative
tests have been carried out; each test has been
repeated 5 times and average results have been
taken. Times have been measured through log
messages in the code, memory occupancy via the
free command in the NuttX shell. Results are as
follows: KB loading has taken 117:2 � 7:22 ms;
the annotation and matchmaking task on 1 sub-

23Protocol bu�ers home: https://developers.
google.com/protocol-buffers

24Nanopb repository: https://github.com/nanopb/
nanopb

16

stance has taken 10:2� 1:12ms, whereas on all the
8 monitored substances in the KB 55:6� 2:58 ms;
used memory after reasoner and KB loading, be-
fore starting the main detection loop, has been
151:5 � 0:21 kB ; used memory at the end of one
detection loop iteration has been 176:0� 0:25 kB .
Basically, these results suggest the computational
sustainability of the proposed tool in a typical
ubiquitous computing scenario on a very resource-
constrained device.

5. Performance evaluation

An early experimental campaign has been car-
ried out to evaluate the computational perfor-
mance of Tiny-ME in Ontology Classi�cation and
non-standard inference tasks. Tests have been ex-
ecuted on desktop and mobile platforms by means
of the evOWLuator framework25. The desk-
top testbed is anApple Mac Mini (2014)26, while
mobile tests have been carried out on anApple
iPhone 727, and aHTC/Google Nexus 9tablet28.

In what follows, peak memory usagerefers
to the maximum resident set size(MRSS) of
the reasoner process, measured by means of the
getrusage POSIX call on iOS and Android, and
via the cross-platformpsutil 29 Python library on
desktop platforms.

All performance results are the average of �ve
cold runs. Standard deviations for time and mem-
ory results are not reported to avoid clutter in
tables and plots, as they are consistently small
(about 5% and 1% of the mean values, respec-
tively).

25evOWLuator Git repository: http://swot.
sisinflab.poliba.it/evowluator/

26Intel i7 4578u dual-core CPU at 3.0 GHz, 16 GB
DDR3 RAM at 1600 MT/s, 1 TB HDD + 128 GB SSD
(Fusion Drive), macOS Mojave 10.14.5

27Apple A10 CPU (2 high-performance cores at 2.34
GHz and 2 low-energy cores), 2 GB LPDDR4 RAM, 32
GB
ash storage, iOS 10.1.1

28Nvidia Tegra K1 dual-core CPU at 2.3 GHz, 2 GB
LPDDR3 RAM at 1600 MT/s, 32 GB
ash storage, An-
droid 7.1.1 Nougat, patch level 5 October 2017

29Python system and process utilities: https://
psutil.readthedocs.io

Full results are available at a permanent URL30

and can be reproduced using the setup instruc-
tions available on the project Web page. Re-
sults also include correctness evaluation, which
has been carried out using Konclude and Mini-
ME Swift as test oracles respectively for Ontology
Classi�cation and the non-standard Matchmak-
ing task described in Section 5.2. All Tiny-ME
variants have provided correct and complete in-
ferences for all ontologies and reasoning tasks.

5.1. Classi�cation
The dataset exploited for the classi�cation test

consists of 1364 knowledge bases obtained from
the 2014 OWL Reasoner Evaluation Workshop
competition31 out of the 16555 KBs in the DL
classi�cation corpus (8:24%), considering all the
KBs supported by Tiny-ME (i.e., having at most
ALN as indicated expressiveness, without gen-
eral concept inclusions and other unsupported
logic constructors). As said, tests refer to both
desktop and mobile platforms.

Desktop. Konclude has been considered as
reference reasoner, due to previous campaigns
[48, 11] indicating it is the most reliable and high-
performance reasoner with respect to Ontology
Classi�cation. Basically, it has been selected as an
oracle for inference correctness, whilst the perfor-
mance report does not imply a direct comparison
with Tiny-ME, as the two systems are grounded
on DLs with di�erent expressiveness and diverse
feature sets. However, since no other actively de-
veloped reasoner targets theALN DL speci�cally
(and a fair comparison is only possible with Mini-
ME), Konclude performance has to be taken into
consideration when assessing the basic goal of this
work, i.e., that the architecture and optimizations
of Tiny-ME make it a worthwhile option for SWoE
resource-constrained devices. Figures 7a and 7b
depict the overall time (cumulative parsing and
reasoning time) and memory peak as a function
of ontology size. The comparison involves Tiny-
ME with C, Java SE and Objective-C (ObjC) in-
terfaces, Mini-ME 2.0 for Java SE and Mini-ME
Swift for macOS.

30https://zenodo.org/record/4405253
31http://dl.kr.org/ore2014

17

	Introduction
	Related work
	Reasoning in the Semantic Web of Everything
	Language and inference services
	Architecture
	Non-standard inference services and OWLlink extension
	Platform-specific APIs

	Case study: hazard risk detection on Pixhawk embedded drone autopilots
	Performance evaluation
	Classification
	Semantic matchmaking

	Conclusion and future work

